Welcome to a modified version of Complexity Zoo.
There are now 603 classes.
Created by Satoshi Hada. I will welcome any comment.
Last Updated: 2025-05-04 07:38:03 +0000
Take for example the result MA=NEXP if and only if NEXP in P/poly. Which class do you think mentions this result? The answer is NEXP (as of April 21, 2011). Neither MA nor P/poly does. So if you visit NEXP, you can find it, otherwise, you can’t. However, those who are interested in MA or P/poly should be able to find the important result. For this purpose, given a class, this modified version displays not only the class itself but also other classes having links to the class. For example, if you visit MA, it displays not only MA but also NEXP so that you can find the result.
This is a ranked list of complexity classes. The score of a class is the number of classes whose description has a link to the class.
Rank | Class | Description | Score |
---|---|---|---|
1 | P | Polynomial-Time | 143 |
2 | NP | Nondeterministic Polynomial-Time | 135 |
3 | BPP | Bounded-Error Probabilistic Polynomial-Time | 63 |
4 | PSPACE | Polynomial-Space | 54 |
5 | PH | Polynomial-Time Hierarchy | 45 |
6 | P/poly | Nonuniform Polynomial-Time | 42 |
7 | BQP | Bounded-Error Quantum Polynomial-Time | 40 |
8 | EXP | Exponential Time | 38 |
9 | PP | Probabilistic Polynomial-Time | 36 |
10 | L | Logarithmic Space | 33 |
11 | NL | Nondeterministic Logarithmic-Space | 27 |
12 | MA | Merlin-Arthur | 24 |
13 | NEXP | Nondeterministic EXP | 24 |
14 | Sharp-P or Number-P | 22 | |
15 | QMA | Quantum MA | 20 |
16 | AM | Arthur-Merlin | 19 |
17 | coNP | Complement of NP | 19 |
18 | DTIME(f(n)) | Deterministic f(n)-Time | 19 |
19 | E | Exponential Time With Linear Exponent | 18 |
20 | FP | Function Polynomial-Time | 17 |
21 | IP | Interactive Proof Systems | 17 |
22 | RP | Randomized Polynomial-Time | 17 |
23 | SZK | Statistical Zero Knowledge | 17 |
24 | AC0 | Unbounded Fanin Constant-Depth Circuits | 16 |
25 | NC | Nick's Class | 15 |
26 | NC1 | Level 1 of NC | 15 |
27 | ZPP | Zero-Error Probabilistic Polynomial-Time | 15 |
28 | DSPACE(f(n)) | Deterministic f(n)-Space | 14 |
29 | FPT | Fixed-Parameter Tractable | 14 |
30 | UP | Unambiguous Polynomial-Time | 13 |
31 | NE | Nondeterministic E | 12 |
32 | Σ2P | NP With NP Oracle | 12 |
33 | FO | First-Order logic | 11 |
34 | ModkP | Mod-k Polynomial-Time | 11 |
35 | EQP | Exact Quantum Polynomial-Time | 10 |
36 | MIP | Multi-Prover Interactive Proof | 10 |
37 | FNP | Function NP | 9 |
38 | NP ∩ coNP | The intersection of NP and coNP | 9 |
39 | ⊕P | Parity P | 9 |
40 | TC0 | Constant-Depth Threshold Circuits | 9 |
41 | BQP/mpoly | BQP With Polynomial-Size Deterministic Merlin-Like Advice | 8 |
42 | C=P | Exact-Counting Polynomial-Time | 8 |
43 | NEE | Nondeterministic EE | 8 |
44 | NP/poly | Nonuniform NP | 8 |
45 | NTIME(f(n)) | Nondeterministic f(n)-Time | 8 |
46 | Pcc | Communication Complexity P | 8 |
47 | PNP[log] | P With Log NP Queries | 8 |
48 | Δ2P | P With NP Oracle | 7 |
49 | DET | Determinant | 7 |
50 | EE | Double-Exponential Time With Linear Exponent | 7 |
51 | NPcc | Communication Complexity NP | 7 |
52 | k-PBP | Polynomial-Size Width-k Branching Program | 7 |
53 | PPA | Polynomial Parity Argument | 7 |
54 | PPcc | Communication Complexity PP | 7 |
55 | PTAS | Polynomial-Time Approximation Scheme | 7 |
56 | QIP | Quantum IP | 7 |
57 | RE | Recursively Enumerable Languages | 7 |
58 | S2P | Second Level of the Symmetric Hierarchy | 7 |
59 | AC | Unbounded Fanin Polylogarithmic-Depth Circuits | 6 |
60 | AC1 | Unbounded Fanin Log-Depth Circuits | 6 |
61 | AWPP | Almost WPP | 6 |
62 | BPEE | Bounded-Error Probabilistic EE | 6 |
63 | BPL | Bounded-Error Probabilistic L | 6 |
64 | BQP/qpoly | BQP With Polynomial-Size Quantum Advice | 6 |
65 | coNEXP | Complement of NEXP | 6 |
66 | LOGCFL | Logarithmically Reducible to CFL | 6 |
67 | mP | Monotone P | 6 |
68 | NC2 | Level 2 of NC | 6 |
69 | NPC | NP-Complete | 6 |
70 | NPO | NP Optimization | 6 |
71 | Π2P | coNP With NP Oracle | 6 |
72 | R | Recursive Languages | 6 |
73 | SBP | Small Bounded-Error Probability | 6 |
74 | SNP | Strict NP | 6 |
75 | SO | Second-Order logic | 6 |
76 | TFNP | Total Function NP | 6 |
77 | W[1] | Weighted Analogue of NP | 6 |
78 | W[t] | Nondeterministic Fixed-Parameter Hierarchy | 6 |
79 | AP | Alternating P | 5 |
80 | APX | Approximable | 5 |
81 | BPPcc | Communication Complexity BPP | 5 |
82 | BPPpath | Threshold BPP | 5 |
83 | CH | Counting Hierarchy | 5 |
84 | coAM | Complement of AM | 5 |
85 | coNE | Complement of NE | 5 |
86 | coNPcc | Complement of NPcc | 5 |
87 | EH | Exponential-Time Hierarchy With Linear Exponent | 5 |
88 | FewP | NP With Few Witnesses | 5 |
89 | LWPP | Length-Dependent Wide PP | 5 |
90 | mNL | Monotone NL | 5 |
91 | ModkL | Mod-k L | 5 |
92 | NC0 | Level 0 of NC | 5 |
93 | NQP | Nondeterministic Quantum Polynomial-Time | 5 |
94 | PC | Polynomial-Time Over The Complex Numbers | 5 |
95 | PPAD | Polynomial Parity Argument (Directed) | 5 |
96 | PPP | Polynomial Pigeonhole Principle | 5 |
97 | PR | Polynomial-Time Over The Reals | 5 |
98 | PZK | Perfect Zero Knowledge | 5 |
99 | QSZK | Quantum Statistical Zero-Knowledge | 5 |
100 | RNC | Randomized NC | 5 |
101 | SL | Symmetric Logarithmic-Space | 5 |
102 | SPP | Stoic PP | 5 |
103 | UPPcc | Unrestricted Communication Analogue of PP | 5 |
104 | VPk | Valiant P Over Field k | 5 |
105 | ACC0 | AC0 With Arbitrary MOD Gates | 4 |
106 | AM[polylog] | AM With Polylog Rounds | 4 |
107 | APP | Amplified PP | 4 |
108 | BP•L | Bounded-Error Probabilistic L with Two Way Access to Randomness | 4 |
109 | CFL | Context-Free Languages | 4 |
110 | CZK | Computational Zero-Knowledge | 4 |
111 | FO[] | Iterated First-Order logic | 4 |
112 | frIP | Function-Restricted IP Proof Systems | 4 |
113 | GapL | Gap Logarithmic-Space | 4 |
114 | MaxSNP | Maximization SNP | 4 |
115 | mL | Monotone L | 4 |
116 | mNC1 | Monotone NC1 | 4 |
117 | NISZK | Non-Interactive SZK | 4 |
118 | NPC | NP Over The Complex Numbers | 4 |
119 | NSPACE(f(n)) | Nondeterministic f(n)-Space | 4 |
120 | O2P | Second Level of the Oblivious Symmetric Hierarchy | 4 |
121 | PBP | Polynomial-Size Branching Program | 4 |
122 | PHcc | Communication Complexity PH | 4 |
123 | PLS | Polynomial Local Search | 4 |
124 | P-OBDD | Polynomial-Size Ordered Binary Decision Diagram | 4 |
125 | PostBQP | BQP With Postselection | 4 |
126 | PR | Primitive Recursive Functions | 4 |
127 | P-Sel | P-Selective Sets | 4 |
128 | P#P | P With #P Oracle | 4 |
129 | QIP[2] | 2-Message Quantum IP | 4 |
130 | QNC | Quantum NC | 4 |
131 | QP | Quasipolynomial-Time | 4 |
132 | RG(2) | Two-turn (one-round) Refereed Games | 4 |
133 | RL | Randomized Logarithmic-Space | 4 |
134 | SC | Steve's Class | 4 |
135 | Sharp-L | 4 | |
136 | W[P] | Weighted Circuit Satisfiability | 4 |
137 | WPP | Wide PP | 4 |
138 | W[SAT] | Weighted Satisfiability | 4 |
139 | XP | Fixed-Parameter Tractable for Each Parameter | 4 |
140 | YP | Your Polynomial-Time or Yaroslav-Percival | 4 |
141 | AC0[m] | AC0 With MOD m Gates | 3 |
142 | AMcc | Communication Complexity AM | 3 |
143 | AmpMP | Amplifiable MP | 3 |
144 | AvgP | Average Polynomial-Time | 3 |
145 | BH | Boolean Hierarchy Over NP | 3 |
146 | BPP/mlog | BPP With Logarithmic Deterministic Merlin-Like Advice | 3 |
147 | BPSPACE(f(n)) | Bounded-Error Probabilistic f(n)-Space | 3 |
148 | BPTIME(f(n)) | Bounded-Error Probabilistic f(n)-Time | 3 |
149 | BQP/poly | BQP With Polynomial-Size Karp-Lipton Advice | 3 |
150 | coC=P | Complement of C=P | 3 |
151 | coRE | Complement of RE | 3 |
152 | coRP | Complement of RP | 3 |
153 | DCFL | Deterministic CFL | 3 |
154 | DiffAC0 | Difference #AC0 | 3 |
155 | DistNP | Distributional NP | 3 |
156 | EEXP | Double-Exponential Time | 3 |
157 | ELEMENTARY | Finitely Iterated Exponential Time | 3 |
158 | EXPSPACE | Exponential Space | 3 |
159 | FBQP | Function BQP | 3 |
160 | FNL | Function NL | 3 |
161 | FO(TC) | First-order with transitive closure | 3 |
162 | FPTAS | Fully Polynomial-Time Approximation Scheme | 3 |
163 | GapP | Gap Polynomial-Time | 3 |
164 | L/poly | Nonuniform Logarithmic Space | 3 |
165 | MAEXP | Exponential-Time MA | 3 |
166 | MaxPB | MaxNP Polynomially Bounded | 3 |
167 | mcoNL | Complement of mNL | 3 |
168 | MIP* | MIP With Quantum Provers | 3 |
169 | ModPH | Modular Counting Hierarchy | 3 |
170 | MP | Middle-Bit P | 3 |
171 | NEEXP | Nondeterministic EEXP | 3 |
172 | NPMV | NP Multiple Value | 3 |
173 | NPMVt | NPMV Total | 3 |
174 | NPR | NP Over The Reals | 3 |
175 | NPSV | NP Single Value | 3 |
176 | NQL | Nondet Quasi-Linear | 3 |
177 | ONP | Oblivious NP | 3 |
178 | para- | Parameterized Complexity | 3 |
179 | Pcc | Pcc in NOF model, players | 3 |
180 | PL | Probabilistic L | 3 |
181 | PNP | P With Oracle Access To NP | 3 |
182 | PostBPPcc | Communication Complexity PostBPP | 3 |
183 | PPADS | Polynomial Parity Argument (Directed, Sink) | 3 |
184 | P||NP | P With Parallel Queries To NP | 3 |
185 | PPSPACE | Probabilistic PSPACE | 3 |
186 | PromiseBPP | Promise-Problem BPP | 3 |
187 | QAC0[m] | Quantum AC0[m] | 3 |
188 | QACC0 | Quantum ACC0 | 3 |
189 | QMA(2) | Quantum MA With Multiple Certificates | 3 |
190 | QMIP | Quantum Multi-Prover Interactive Proofs | 3 |
191 | QNC0 | Quantum NC0 | 3 |
192 | QRG(2) | Two-turn (one-round) Quantum Refereed Games | 3 |
193 | QRG(k) | k-turn Quantum Refereed Games | 3 |
194 | RG | Refereed Games | 3 |
195 | RG(k) | k-turn Refereed Games | 3 |
196 | S2-EXP•PNP | Don't Ask | 3 |
197 | SPARSE | Sparse Languages | 3 |
198 | SQG | Short Quantum Games | 3 |
199 | ⊕L | Parity L | 3 |
200 | TALLY | Tally Languages | 3 |
201 | UL | Unambiguous L | 3 |
202 | VNPk | Valiant NP Over Field k | 3 |
203 | WAPP | Weak Almost-Wide PP | 3 |
204 | XL | Fixed-Parameter Logspace for Each Parameter | 3 |
205 | XPuniform | Uniform XP | 3 |
206 | YQP* | Yaroslav BQP star | 3 |
207 | ZBQP | Strict Quantum ZPP | 3 |
208 | A0PP | One-Sided Analog of AWPP | 2 |
209 | AL | Alternating L | 2 |
210 | ALL | The Class of All Languages | 2 |
211 | Almost-P | Languages Almost Surely in PA | 2 |
212 | AW[SAT] | Alternating W[SAT] | 2 |
213 | AW[*] | Alternating W[*] | 2 |
214 | AxP | Approximable in Polynomial Time | 2 |
215 | βP | Limited-Nondeterminism NP | 2 |
216 | BPd(P) | Polynomial Size d-Times-Only Branching Program | 2 |
217 | BPE | Bounded-Error Probabilistic E | 2 |
218 | BPHSPACE(f(n)) | Bounded-Error Halting Probabilistic f(n)-Space | 2 |
219 | BPPcc | BPPcc in NOF model, players | 2 |
220 | BPP-OBDD | Polynomial-Size Bounded-Error Ordered Binary Decision Diagram | 2 |
221 | BPP/rlog | BPP With Logarithmic Probabilistically Sampled Random Advice | 2 |
222 | BQP/mlog | BQP With Logarithmic-Size Deterministic Merlin-Like Advice | 2 |
223 | BQP/qlog | BQP With Logarithmic-Size Quantum Advice | 2 |
224 | Check | Checkable Languages | 2 |
225 | Coh | Coherent Languages | 2 |
226 | compNP | Competitive NP Proof System | 2 |
227 | coNL | Complement of NL | 2 |
228 | coUP | Complement of UP | 2 |
229 | CP | Continuous P | 2 |
230 | DQP | Dynamical Quantum Polynomial-Time | 2 |
231 | k-EQBP | Width-k Polynomial-Time Exact Quantum Branching Programs | 2 |
232 | ESPACE | Exponential Space With Linear Exponent | 2 |
233 | ∃BPP | BPP With Existential Operator | 2 |
234 | Few | FewP With Flexible Acceptance Mechanism | 2 |
235 | FO(LFP) | First-order with least fixed point | 2 |
236 | FOLL | First-Order log log n | 2 |
237 | FO(PFP) | First-order with partial fixed point | 2 |
238 | GA | Graph Automorphism | 2 |
239 | GapAC0 | Gap #AC0 | 2 |
240 | GI | Graph Isomorphism | 2 |
241 | GPCD(r(n),q(n)) | Generalized Probabilistically Checkable Debate | 2 |
242 | HeurDTIME(f(n)) | Heuristic DTIME | 2 |
243 | IC[log,poly] | Logarithmic Instance Complexity, Polynomial Time | 2 |
244 | LkP | Low Hierarchy In NP | 2 |
245 | LOGNP | Logarithmically-Restricted NP | 2 |
246 | LOGSNP | Logarithmically-Restricted SNP | 2 |
247 | MAC0 | Majority of AC0 | 2 |
248 | MAE | Exponential-Time MA With Linear Exponent | 2 |
249 | MaxNP | Maximization NP | 2 |
250 | MMSNP | Monadic Monotone SNP | 2 |
251 | mNP | Monotone NP | 2 |
252 | NAuxPDAp | Nondeterministic Auxiliary Pushdown Automata | 2 |
253 | NEXP/poly | Nonuniform NEXP | 2 |
254 | NL/poly | Nonuniform NL | 2 |
255 | NPI | NP-Intermediate | 2 |
256 | NPcc | NPcc in NOF model, players | 2 |
257 | NPOPB | NPO Polynomially Bounded | 2 |
258 | (NP,P-samplable) | Average NP With Samplable Distributions | 2 |
259 | NPSPACE | Nondeterministic PSPACE | 2 |
260 | NPSVt | NPSV Total | 2 |
261 | PCD(r(n),q(n)) | Probabilistically Checkable Debate | 2 |
262 | PCP(r(n),q(n)) | Probabilistically Checkable Proof | 2 |
263 | PDQP | Product Dynamical Quantum Polynomial time | 2 |
264 | P/log | P With Logarithmic Advice | 2 |
265 | PNPcc | Communication Complexity PNP | 2 |
266 | PPP | P With PP Oracle | 2 |
267 | PromiseP | Promise-Problem P | 2 |
268 | PT1 | Polynomial Threshold Functions | 2 |
269 | Q | Quasi-Realtime Languages | 2 |
270 | QAC0 | Quantum AC0 | 2 |
271 | QACf0 | QAC0 With Fanout | 2 |
272 | QL | Quasi-Linear | 2 |
273 | QMA-plus | QMA With Super-Verifier | 2 |
274 | QMA/qpoly | QMA With Polynomial-Size Quantum Advice | 2 |
275 | QMIPne | Quantum Multi-Prover Interactive Proofs With No Prior Entanglement | 2 |
276 | QNCf0 | Quantum NC0 With Unbounded Fanout | 2 |
277 | QPH | Quantum PH | 2 |
278 | QRG | Quantum Refereed Games | 2 |
279 | QRG(1) | One-turn Quantum Refereed Games | 2 |
280 | QRL | Quantum Regular Languages | 2 |
281 | RBQP | Strict Quantum RP | 2 |
282 | REG | Regular Languages | 2 |
283 | RG(1) | One-turn Refereed Games | 2 |
284 | RPcc | Randomized Pcc | 2 |
285 | RQP | One-sided Error Extension of EQP | 2 |
286 | SAC | Semi-Unbounded-Fanin AC | 2 |
287 | SAC1 | Semi-Unbounded-Fanin AC1 | 2 |
288 | SAPTIME | Stochastic Alternating Polynomial-Time | 2 |
289 | SBPcc | Communication Complexity SBP | 2 |
290 | ⊕Pcc | Communication Complexity ⊕P | 2 |
291 | Sharp-AC0 | 2 | |
292 | TC | Threshold Circuits | 2 |
293 | TOWER | Iterated Exponential Time | 2 |
294 | UCFL | Unambiguous CFL | 2 |
295 | UL/poly | Nonuniform UL | 2 |
296 | XNL | Fixed-Parameter Nondeterministic Logspace for Each Parameter | 2 |
297 | YP* | Yaroslav-Percival Star | 2 |
298 | YPP | Yaroslav BPP | 2 |
299 | YQP | Yaroslav BQP | 2 |
300 | ZK | Zero-Knowledge (see CZK) | 2 |
301 | ZP•L | Zero-Error Probabilistic L with Two Way Access to Randomness | 2 |
302 | ZQP | Zero-Error Extension Of EQP | 2 |
303 | AH | Arithmetic Hierarchy | 1 |
304 | ALOGTIME | Logarithmic time alternating RAM | 1 |
305 | AMEXP | Exponential-Time AM | 1 |
306 | AUC-SPACE(f(n)) | Randomized Alternating f(n)-Space | 1 |
307 | AVBPP | Average-Case BPP | 1 |
308 | AW[P] | Alternating W[P] | 1 |
309 | AW[t] | Alternating W[t] | 1 |
310 | AxPP | Approximable in Probabilistic Polynomial Time | 1 |
311 | BPPKT | BPP With Time-Bounded Kolmogorov Complexity Oracle | 1 |
312 | BPP/log | BPP With Logarithmic Karp-Lipton Advice | 1 |
313 | BPP//log | BPP With Logarithmic Randomness-Dependent Advice | 1 |
314 | BPQP | Bounded-Error Probabilistic QP | 1 |
315 | BQP/log | BQP With Logarithmic-Size Karp-Lipton Advice | 1 |
316 | BQP-OBDD | Polynomial-Size Bounded-Error Quantum Ordered Binary Decision Diagram | 1 |
317 | BQTIME(f(n)) | Bounded-Error Quantum f(n)-Time | 1 |
318 | CC0 | Constant-Depth MODm Circuits | 1 |
319 | C=AC0 | Exact-Counting AC0 | 1 |
320 | C=L | Exact-Counting L | 1 |
321 | CkP | kth Level of CH | 1 |
322 | CL | Catalytic Logspace | 1 |
323 | CLOG | Continuous Logarithmic-Time | 1 |
324 | CNP | Continuous NP | 1 |
325 | cofrIP | Complement of frIP | 1 |
326 | compIP | Competitive IP Proof System | 1 |
327 | coNQP | Complement of NQP | 1 |
328 | coRNC | Complement of RNC | 1 |
329 | coSL | Complement of SL | 1 |
330 | coSPARSE | Complement of SPARSE | 1 |
331 | CSIZE(f(n)) | Circuit Size f(n) | 1 |
332 | CSL | Context Sensitive Languages | 1 |
333 | CSP | Constraint Satisfaction Problems | 1 |
334 | CSPACE | Catalytic space | 1 |
335 | δ-BPP | δ-Semi-Random BPP | 1 |
336 | DP or Dp | Difference Polynomial-Time | 1 |
337 | DTISP(t(n),s(n)) | Simultaneous t(n)-Time and s(n)-Space | 1 |
338 | Dyn-FO | Dynamic FO | 1 |
339 | Dyn-ThC0 | Dynamic Threshold Circuits | 1 |
340 | EEE | Triple-Exponential Time With Linear Exponent | 1 |
341 | EESPACE | Double-Exponential Space With Linear Exponent | 1 |
342 | EP | NP with 2k Accepting Paths | 1 |
343 | EPTAS | Efficient Polynomial-Time Approximation Scheme | 1 |
344 | EQPK | Exact Quantum Polynomial-Time with Gate Set K | 1 |
345 | FERT | Fixed Error Randomized Time | 1 |
346 | FO(DTC) | First-order with deterministic transitive closure | 1 |
347 | FPERT | Fixed Parameter and Error Randomized Time | 1 |
348 | FPR | Fixed-Parameter Randomized | 1 |
349 | FPRAS | Fully Polynomial Randomized Approximation Scheme | 1 |
350 | FPTnu | Fixed-Parameter Tractable (nonuniform) | 1 |
351 | FPTsu | Fixed-Parameter Tractable (strongly uniform) | 1 |
352 | F-TAPE(f(n)) | Provable DSPACE(f(n)) For Formal System F | 1 |
353 | F-TIME(f(n)) | Provable DTIME(f(n)) For Formal System F | 1 |
354 | GAN-SPACE(f(n)) | Games Against Nature f(n)-Space | 1 |
355 | GCSL | Growing CSL | 1 |
356 | HeurBPP | Heuristic BPP | 1 |
357 | HeurBPTIME(f(n)) | Heuristic BPTIME(f(n)) | 1 |
358 | HeurP | Heuristic P | 1 |
359 | HkP | High Hierarchy In NP | 1 |
360 | HVPZK | Honest-Verifier PZK | 1 |
361 | HVSZK | Honest-Verifier SZK | 1 |
362 | IPP | Unbounded IP | 1 |
363 | LC0 | Unbounded Fanin Linear Size (gates) Constant-Depth Circuits | 1 |
364 | LIN | Linear Time | 1 |
365 | LogFew | Logspace-Bounded Few | 1 |
366 | LogFewNL | Logspace-Bounded FewP | 1 |
367 | MAcc | Communication Complexity MA | 1 |
368 | mAL | Monotone AL | 1 |
369 | MAPOLYLOG | MA With Polylog Verifier | 1 |
370 | MaxSNP0 | Generating Class of MaxSNP | 1 |
371 | MinPB | MinNP Polynomially Bounded | 1 |
372 | MIPEXP | Exponential-Time Multi-Prover Interactive Proof | 1 |
373 | ModP | ModkP With Arbitrary k | 1 |
374 | ModZkL | Restricted ModkL | 1 |
375 | mP/poly | Monotone P/poly | 1 |
376 | mTC0 | Monotone TC0 | 1 |
377 | NE/poly | Nonuniform NE | 1 |
378 | NIPZK | Non-Interactive PZK | 1 |
379 | NISZKh | NISZK With Limited Help | 1 |
380 | NLIN | Nondeterministic LIN | 1 |
381 | NLT | Nearly Linear Time | 1 |
382 | NNLT | Nondeterministic Nearly Linear Time | 1 |
383 | NT | Near-Testable | 1 |
384 | NT* | Near-Testable With Forest Ordering | 1 |
385 | OMA | Oblivious MA | 1 |
386 | OptP | Optimum Polynomial-Time | 1 |
387 | PAC0 | Probabilistic AC0 | 1 |
388 | para-NL | Parameterized Nondeterministic Logspace | 1 |
389 | para-NL[f log] | Parameterized Nondeterministic Logspace | 1 |
390 | PermUP | Self-Permuting UP | 1 |
391 | PINC | Polynomial Ignorance of Names of Classes | 1 |
392 | PIO | Polynomial Input Output | 1 |
393 | PK | P With Kolmogorov-Complexity Oracle | 1 |
394 | PKC | Perfect Knowledge Complexity | 1 |
395 | PL1 | Polynomially-Bounded L1 Spectral Norm | 1 |
396 | PL∞ | Polynomially-Bounded L∞-1 Spectral Norm | 1 |
397 | P-LOCAL | Polylogarithmic rounds in the LOCAL model | 1 |
398 | PNP[k] | P With k NP Queries(for constant k) | 1 |
399 | polyL | Polylogarithmic Space | 1 |
400 | PostBPP | BPP With Postselection | 1 |
401 | P||QMA | P With Parallel Queries To QMA | 1 |
402 | PQMA[log] | P With Log QMA Queries | 1 |
403 | PrHSPACE(f(n)) | Unbounded-Error Halting Probabilistic f(n)-Space | 1 |
404 | P-RLOCAL | Polylogarithmic rounds in the Randomized LOCAL model | 1 |
405 | PromiseRP | Promise-Problem RP | 1 |
406 | PromiseUP | Promise-Problem UP | 1 |
407 | PrSPACE(f(n)) | Unbounded-Error Probabilistic f(n)-Space | 1 |
408 | P#P[1] | P With Single Query To #P Oracle | 1 |
409 | PSPACE/poly | PSPACE With Polynomial-Size Advice | 1 |
410 | PT/WK(f(n),g(n)) | Parallel Time f(n) / Work g(n) | 1 |
411 | QCFL | Quantum CFL | 1 |
412 | QCMA | Quantum Classical MA | 1 |
413 | QCPH | Quantum Classical PH | 1 |
414 | QH | Query Hierarchy Over NP | 1 |
415 | QMA+ | QMA With Non-Negative Amplitudes | 1 |
416 | QMAlog | QMA With Logarithmic-Size Proofs | 1 |
417 | QMIPle | Quantum Multi-Prover Interactive Proofs With Limited Prior Entanglement | 1 |
418 | QNC0/🐱 | Quantum NC0 With Polynomial-Size Quantum Advice | 1 |
419 | QNC0/qpoly | Quantum NC0 With Polynomial-Size Quantum Advice | 1 |
420 | QPLIN | Linear Quasipolynomial-Time | 1 |
421 | RevSPACE(f(n)) | Reversible f(n)-Space | 1 |
422 | RHL | Randomized Halting Logarithmic-Space | 1 |
423 | RHSPACE(f(n)) | One-Sided Error Halting Probabilistic f(n)-Space | 1 |
424 | RNC1 | Randomized NC1 | 1 |
425 | RSPACE(f(n)) | Randomized f(n)-Space | 1 |
426 | SBQP | Small Bounded-Error Quantum Polynomial-Time | 1 |
427 | SEH | Strong Exponential Hierarchy | 1 |
428 | SelfNP | Self-Witnessing NP | 1 |
429 | SIZE(f(n)) | Circuit Size f(n) | 1 |
430 | S≠ | Exclusive Stochastic Languages | 1 |
431 | SO(Krom) | Second-order in Krom form | 1 |
432 | SO[LFP] | Second-Order logic with least fixed point | 1 |
433 | SO[TC] | Second-Order logic with transitive closure | 1 |
434 | SZKh | SZK With Limited Help | 1 |
435 | 2-EXP | Double-Exponential Time | 1 |
436 | ⊕SAC1 | AC1 With Unbounded Parity Gates | 1 |
437 | Nonuniform #L | 1 | |
438 | TC1 | Log-depth Threshold Circuits | 1 |
439 | Θ2P | Alternate name for PNP[log] | 1 |
440 | TreeBQP | BQP Restricted To Tree States | 1 |
441 | UCC | Unique Connected Component | 1 |
442 | UE | Unambiguous Exponential-Time With Linear Exponent | 1 |
443 | UPcc | Communication Complexity UP | 1 |
444 | UPostBPPcc | Unrestricted Communication Analogue of PostBPP | 1 |
445 | VCk | Verification Class With A Circuit of Depth K | 1 |
446 | VNCk | Valiant NC Over Field k | 1 |
447 | VQPk | Valiant QP Over Field k | 1 |
448 | WAPPcc | Communication Complexity WAPP | 1 |
449 | WHILE | While programs and some restrictions | 1 |
450 | WLC0 | Unbounded Fanin Linear Size (wires) Constant-Depth Circuits | 1 |
451 | W[*] | Union of W[t]'s | 1 |
452 | W*[t] | W[t] With Parameter-Dependent Depth | 1 |
453 | XOR-MIP*[2,1] | MIP*[2,1] With 1-Bit Proofs | 1 |
454 | ZPPcc | Communication Complexity ZPP | 1 |
455 | 0-1-NPC | Binary Restriction of NP Over The Complex Numbers | 0 |
456 | 1NAuxPDAp | One-Way NAuxPDAp | 0 |
457 | 3SUM-hard | Problems hard for 3SUM | 0 |
458 | Graph Automorphism | 0 | |
459 | Sharp-W[t] | 0 | |
460 | ⊕EXP | Parity EXP | 0 |
461 | ⊕L/poly | Nonuniform ⊕L | 0 |
462 | ⊕SAC0 | AC0 With Unbounded Parity Gates | 0 |
463 | Ack | Ackermann Time | 0 |
464 | AlgP/poly | Polynomial-Size Algebraic Circuits | 0 |
465 | Almost-NP | Languages Almost Surely in NPA | 0 |
466 | Almost-PSPACE | Languages Almost Surely in PSPACEA | 0 |
467 | AM ∩ coAM | The intersection of AM and coAM | 0 |
468 | AmpP-BQP | BQP Restricted To AmpP States | 0 |
469 | APSPACE | Alternating PSPACE | 0 |
470 | AuxPDA | Auxiliary Pushdown Automata | 0 |
471 | AvgE | Average Exponential-Time With Linear Exponent | 0 |
472 | βFOLL | Limited-Nondeterminism FOLL | 0 |
473 | βMAC0 | Limited-Nondeterminism MAC0 | 0 |
474 | BC=P | Bounded-Error C=P | 0 |
475 | BP•NP | Probabilistic NP | 0 |
476 | BQL | Bounded-Error Quantum Logspace | 0 |
477 | BQNC | Alternate Name for QNC | 0 |
478 | BQNP | Alternate Name for QMA | 0 |
479 | BQPSPACE | Bounded-Error Quantum PSPACE | 0 |
480 | BQPtt/poly | BQP/mpoly With Truth-Table Queries | 0 |
481 | k-BWBP | Bounded-Width Branching Program | 0 |
482 | CC | Comparator Circuits | 0 |
483 | CL#P | Cluster Sharp-P | 0 |
484 | coMA | Complement of MA | 0 |
485 | coModkP | Complement of ModkP | 0 |
486 | coNPC | coNP-Complete | 0 |
487 | coNP/poly | Complement of NP/poly | 0 |
488 | coUCC | Complement of UCC | 0 |
489 | cq-Σ2 | Classical-Quantum-Σ2P | 0 |
490 | D#P | Alternate Name for P#P | 0 |
491 | δ-RP | δ-Semi-Random RP | 0 |
492 | DistributionPH | Distribution PH | 0 |
493 | DisNP | Disjoint NP Pairs | 0 |
494 | DQC1 | Deterministic Quantum Computing with 1 Clean Bit | 0 |
495 | ELkP | Extended Low Hierarchy | 0 |
496 | EQTIME(f(n)) | Exact Quantum f(n)-Time | 0 |
497 | ∃NISZK | NISZK With Existential Operator | 0 |
498 | ∃R | Existential theory of the reals | 0 |
499 | EXP/poly | Exponential Time With Polynomial-Size Advice | 0 |
500 | FBPP | Function BPP | 0 |
501 | FewEXP | NEXP With Few Witnesses | 0 |
502 | FH | Fourier Hierarchy | 0 |
503 | FIXP | Fixed Point | 0 |
504 | FNL/poly | Nonuniform FNL | 0 |
505 | FPNP[log] | FP With Logarithmically Many Queries To NP | 0 |
506 | FPL | Fixed Parameter Linear | 0 |
507 | FQMA | Function QMA | 0 |
508 | GC(s(n),C) | Guess and Check | 0 |
509 | GLO | Guaranteed Local Optima | 0 |
510 | G[t] | Stratification of Fixed-Parameter Tractable Problems | 0 |
511 | HalfP | RP With Exactly Half Acceptance | 0 |
512 | HeurPP | Heuristic PP | 0 |
513 | HeurNTIME(f(n)) | Heuristic NTIME | 0 |
514 | HO | High-Order logic | 0 |
515 | IOP | Interactive Oracle Proof | 0 |
516 | IP[polylog] | IP With Polylog Rounds | 0 |
517 | K | Feasibly recursive functions | 0 |
518 | LH | Logarithmic Time Hierarchy | 0 |
519 | LOGLOG | loglog Space | 0 |
520 | MA' | Sparse MA | 0 |
521 | MIPns | MIP with Non-Signaling Provers | 0 |
522 | (Mk)P | Acceptance Mechanism by Monoid Mk | 0 |
523 | MM | Problems reducible to matrix multiplication | 0 |
524 | ModL | ModL | 0 |
525 | MPC | Monotone Planar Circuits | 0 |
526 | naCQP | non-adaptive Collapse-free Quantum Polynomial time | 0 |
527 | Nearly-P | Languages Superpolynomially Close to P | 0 |
528 | NEEE | Nondeterministic EEE | 0 |
529 | NIQSZK | Non-Interactive QSZK | 0 |
530 | NLO | NL Optimization Problems | 0 |
531 | NLOG | NL With Nondeterministic Oracle Tape | 0 |
532 | NMCL | Nondeterministic Moore-Crutchfield Languages | 0 |
533 | NONE | The Empty Class | 0 |
534 | (NP ∩ coNP)/poly | Nonuniform NP ∩ coNP | 0 |
535 | NP/log | NP With Logarithmic Advice | 0 |
536 | NPMV-sel | NPMV Selective | 0 |
537 | NPMVt-sel | NPMVt Selective | 0 |
538 | NPSV-sel | NPSV Selective | 0 |
539 | NPSVt-sel | NPSVt Selective | 0 |
540 | NQL | Nondeterministic Quantum Languages | 0 |
541 | OIP | Oblivious IP | 0 |
542 | PCTC | P With Closed Time Curves | 0 |
543 | para-L | Parameterized Logspace | 0 |
544 | para-P | Parameterized Polynomial time. | 0 |
545 | P-Close | Problems Close to P | 0 |
546 | PEXP | Probabilistic Exponential-Time | 0 |
547 | PF | Alternate Name for FP | 0 |
548 | PFCHK(t(n)) | Proof-Checker | 0 |
549 | Φ2P | Second Level of the Symmetric Hierarchy, Alternative Definition | 0 |
550 | PhP | Physical Polynomial-Time | 0 |
551 | PLF | Polynomial Leaf | 0 |
552 | PLL | Polynomial Local Lemma | 0 |
553 | PNP[log^2] | P With Log2 NP Queries | 0 |
554 | PODN | Polynomial Odd Degree Node | 0 |
555 | PP/poly | Nonuniform PP | 0 |
556 | PQP | Probabilistic Quantum Polynomial-Time | 0 |
557 | PQUERY | PSPACE With Polynomial Queries | 0 |
558 | PromiseBQP | Promise-Problem BQP | 0 |
559 | PSK | Polynomial Sink | 0 |
560 | PSPACEcc | Communication Complexity PSPACE | 0 |
561 | PTAPE | Archaic for PSPACE | 0 |
562 | PureSuperQMA | A pure-state analog of SuperQMA | 0 |
563 | QAM | Quantum AM | 0 |
564 | QEPH | Entangled Quantum PH | 0 |
565 | QMA1 | One Sided QMA | 0 |
566 | QMA+(2) | QMA(2) With Non-Negative Amplitudes | 0 |
567 | QMAM | Quantum Merlin-Arthur-Merlin Public-Coin Interactive Proofs | 0 |
568 | QNC1 | Quantum NC1 | 0 |
569 | QPIP | Quantum Prover Interactive Proof | 0 |
570 | QPSPACE | Quasipolynomial-Space | 0 |
571 | RPcc | Communication Complexity RP | 0 |
572 | RPP | Restricted Pseudo Polynomial-Time | 0 |
573 | S2E | Second Level of the Symmetric Linear Exponent Hierarchy | 0 |
574 | SAC0 | Semi-Unbounded-Fanin AC0 | 0 |
575 | SE | Subexponentially-Solvable Search Problems | 0 |
576 | SFk | Width-k Bottleneck Turing Machines | 0 |
577 | SKC | Statistical Knowledge Complexity | 0 |
578 | SLICEWISE PSPACE | Parametrized PSPACE | 0 |
579 | SO(Horn) | Second-order in Horn form | 0 |
580 | SO[] | Iterated Second-Order logic | 0 |
581 | SP | Semi-Efficient Parallel | 0 |
582 | span-L | Span Logarithmic-Space | 0 |
583 | span-P | Span Polynomial-Time | 0 |
584 | SPL | Stoic PL | 0 |
585 | StoqMA | Stoquastic MA | 0 |
586 | SUBEXP | Deterministic Subexponential-Time | 0 |
587 | symP | Alternate Name for S2P | 0 |
588 | TC0(FOLL) | Languages that are TC0 Turing reducible to FOLL | 0 |
589 | TI | Tensor Isomorphism | 0 |
590 | TREE-REGULAR | Regular Tree-Valued Languages | 0 |
591 | UAMcc | Unambiguous Arthur-Merlin Communication Complexity | 0 |
592 | UAP | Unambiguous Alternating Polynomial-Time | 0 |
593 | US | Unique Polynomial-Time | 0 |
594 | USBPcc | Unrestricted Communication Analogue of SBP | 0 |
595 | UWAPPcc | Unrestricted Communication Analogue of WAPP | 0 |
596 | VCor | Verification Class With OR | 0 |
597 | VPL | Visibly pushdown languages | 0 |
598 | XNLP | Fixed-Parameter Nondeterministic Logspace and Polytime for Each Parameter | 0 |
599 | YACC | Yet Another Complexity Class | 0 |
600 | YQP*/poly | YQP* With Polynomial-Size Advice | 0 |
601 | ZAMcc | Zero-Information Arthur-Merlin Communication Complexity | 0 |
602 | ZPE | Zero-Error Probabilistic E | 0 |
603 | ZPTIME(f(n)) | Zero-Error Probabilistic f(n)-Time | 0 |