A level of PH, the polynomial hierarchy.
One Δ2P-complete problem: Given a Boolean formula, does the lexicographically last satisfying assignment end with a 1? [Kre88]
Contains BH.
There exists an oracle relative to which Δ2P is not contained in PP [Bei94].
There exists another oracle relative to which Δ2P is contained in P/poly [BGS75], and indeed has linear-size circuits [Wil85].
There exists an oracle B for which BPPB is exponentially more powerful than Δ2PB [KV96].
If P = NP, then any polynomial-size circuit C can be learned in Δ2P with C oracle [Aar06].
The smallest class that contains NP and is closed under union, intersection, and complement.
The levels are defined as follows:
Then BH is the union over all i of BHi.
Defined in [WW85].
For more detail see [CGH+88].
Contained in Δ2P and indeed in PNP[log].
If BH collapses at any level, then PH collapses to Σ3P [Kad88].
The same as BQP, except that the quantum algorithm must return the correct answer with probability 1, and run in polynomial time with probability 1. Unlike bounded-error quantum computing, there is no theory of universal QTMs for exact quantum computing models. In the original definition in [BV97], each language in EQP is computed by a single QTM, equivalently to a uniform family of quantum circuits with a finite gate set K whose amplitudes can be computed in polynomial time. See EQPK. However, some results require an infinite gate set. The official definition here is that the gate set should be finite.
Without loss of generality, the amplitudes in the gate set K are algebraic numbers [ADH97].
There is an oracle that separates EQP from NP [BV97], indeed from Δ2P [GP01]. There is also an oracle relative to which EQP is not in ModpP where p is prime [GV02]. On the other hand, EQP is in LWPP [FR98].
P||NP[2k] is contained in EQP||NP[k], where "||NP[k]" denotes k nonadaptive oracle queries to NP (queries that cannot depend on the results of previous queries) [BD99].
See also ZBQP.
Can be defined as the class of problems polynomial-time Turing reducible to the Graph Isomorphism problem.
Contains GA and is contained in Δ2P.
The Graph Isomorphism problem itself (as opposed to the set of problems Turing reducible to Graph Isomorphism) is contained in NP as well as coAM (and indeed SZK). So in particular, if Graph Isomorphism is NP-complete, then PH collapses.
Many natural problems are GI-complete (polynomial-time Turing equivalent to GI); for a partial list see the Wikipedia page. While many of these are GI for a restricted class of graphs, some surprising GI-complete problems are: isomorphism of finite automata, isomorphism of commutative class 3 nilpotent semigroups, isomorphism of algebras over a field whose radical squares to zero and whose radical quotient is abelian [Gri83], and isomorphism of context-free grammars (for all of these and further references see [ZKT85]). Conjugacy of semisimple Lie algebras given by matrices is also GI-hard, and is even GI-complete assuming one can compute relevant eigenvalues [Gro12].
See [KST93] for much more information about GI.
The class of decision problems solvable by a family of polynomial-size Boolean circuits. The family can be nonuniform; that is, there could be a completely different circuit for each input length.
Equivalently, P/poly is the class of decision problems solvable by a polynomial-time Turing machine that receives a trusted 'advice string,' that depends only on the size n of the input, and that itself has size upper-bounded by a polynomial in n.
Contains BPP by the progenitor of derandomization arguments [Adl78] [KL82]. By extension, BPP/poly, BPP/mpoly, and BPP/rpoly all equal P/poly. (By contrast, there is an oracle relative to which BPP/log does not equal BPP/mlog, while BPP/mlog and BPP/rlog are not equal relative to any oracle.)
[KL82] showed that, if P/poly contains NP, then PH collapses to the second level, Σ2P.
They also showed:
It was later shown that, if NP is contained in P/poly, then PH collapses to ZPPNP [KW98] and indeed to O2P [CR06] (which is unconditionally included in P/poly). This seems close to optimal, since there exists an oracle relative to which the collapse cannot be improved to Δ2P [Wil85].
If NP is not contained in P/poly, then P does not equal NP. Much of the effort toward separating P from NP is based on this observation. However, a 'natural proof' as defined by [RR97] cannot be used to show NP is outside P/poly, if there is any pseudorandom generator in P/poly that has hardness 2Ω(n^ε) for some ε>0.
If NP is contained in P/poly, then MA = AM [AKS+95]
The monotone version of P/poly is mP/poly.
P/poly has measure 0 in E with Σ2P oracle [May94b].
Strictly contains IC[log,poly] and P/log.
The complexity class of P with untrusted advice depending only on input size is ONP.
See Δ2P.
The class of decision problems solvable by an NP machine such that
Defined in [Gil77].
PP is closed under union and intersection [BRS91] (this was an open problem for 14 years). More generally, PPP[log] = PP. Even more generally, PP is closed under polynomial-time truth-table reductions, or even k-round reductions for any constant k [FR96].
Contains PNP[log] [BHW89] and QMA (see [MW05]). However, there exists an oracle relative to which PP does not contain Δ2P [Bei94].
BPP [KST+89b] and even BQP [FR98] and YQP* [Yir24] are low for PP: i.e., PPBQP = PP.
APP is PP-low [Li93].
For a random oracle A, PPA is strictly contained in PSPACEA with probability 1 [ABF+94].
For any fixed k, there exists a language in PP that does not have circuits of size nk [Vin04b].
Indeed, there exists a language in PP that does not even have quantum circuits of size nk with quantum advice [Aar06] and [Yir24].
By contrast, there exists an oracle relative to which PP has linear-size circuits [Aar06].
PP can be generalized to the counting hierarchy CH.
The class of decision problems for which there is a polynomial-time predicate P such that, on input x,
Note that this differs from Σ2P in that the quantifiers in the second condition are reversed.
Less formally, S2P is the class of one-round games in which a prover and a disprover submit simultaneous moves to a deterministic, polynomial-time referee. In Σ2P, the prover moves first.
Defined in [RS98], where it was also shown that S2P contains MA and Δ2P. Defined independently in [Can96].
Contains (and contrast with) O2P. If NP is contained in P/poly then PH = S2P (attributed to Sengupta in [Cai01]), and even is equal to O2P [CR06].