The union of the CkP's over all constant k.
Contained in PSPACE.
Strictly contains DLOGTIME-uniform TC0 [CMTV98].
It is an open problem whether there exists an oracle relative to which CH is infinite, or even unequal to PSPACE. This is closely related to the problem of whether TC0 = NC1, since a padding argument shows that TC0 = NC1 implies CH = PSPACE.
The class of problems solvable by a BQP machine that receives a quantum state ψn as advice, which depends only on the input length n.
As with BQP/mpoly, the acceptance probability does not need to be bounded away from 1/2 if the machine is given bad advice. (Thus, we are discussing the class that [NY03] call BQP/*Qpoly.) Indeed, such a condition would make quantum advice unusable, by a continuity argument.
Does not contain EESPACE [NY03].
[AD14] showed that BQP/qpoly = YQP/poly.
There exists an oracle relative to which BQP/qpoly does not contain NP [Aar04b].
A classical oracle separation between BQP/qpoly and BQP/mpoly is presently unknown, but there is a quantum oracle separation [AK06]. An unrelativized separation is too much to hope for, since it would imply that PP is not contained in P/poly.
Contains BQP/mpoly.
Does not contain PP unless CH collapses [Aar06],[Yir24].
Defined as follows:
The union of the CkP's is called the counting hierarchy, CH.
Defined in [Wag86].
See [Tor91] or [AW90] for more information.
I decided this class is so important that it deserves an entry of its own, apart from #P.
Contains PH [Tod89], and is contained in CH and in PSPACE.
Equals PPP (exercise for the visitor).
The class of decision problems solvable by an NP machine such that
Defined in [Gil77].
PP is closed under union and intersection [BRS91] (this was an open problem for 14 years). More generally, PPP[log] = PP. Even more generally, PP is closed under polynomial-time truth-table reductions, or even k-round reductions for any constant k [FR96].
Contains PNP[log] [BHW89] and QMA (see [MW05]). However, there exists an oracle relative to which PP does not contain Δ2P [Bei94].
BPP [KST+89b] and even BQP [FR98] and YQP* [Yir24] are low for PP: i.e., PPBQP = PP.
APP is PP-low [Li93].
For a random oracle A, PPA is strictly contained in PSPACEA with probability 1 [ABF+94].
For any fixed k, there exists a language in PP that does not have circuits of size nk [Vin04b].
Indeed, there exists a language in PP that does not even have quantum circuits of size nk with quantum advice [Aar06] and [Yir24].
By contrast, there exists an oracle relative to which PP has linear-size circuits [Aar06].
PP can be generalized to the counting hierarchy CH.
A level of the counting hierarchy CH.
It is not known whether there exists an oracle relative to which PPP does not equal PSPACE.
Equals P#P (exercise for the visitor).
Since the permanent of a matrix is #P-complete [Val79], Toda's theorem implies that any problem in the polynomial hierarchy can be solved by computing a sequence of permanents.