Class Description

QSZK: Quantum Statistical Zero-Knowledge

A quantum analog of SZK (or more precisely HVSZK).

Arthur is a BQP (i.e. quantum) verifier who can exchange quantum messages with Merlin. So Arthur and Merlin's states may become entangled during the course of the protocol.

Arthur's "view" of his interaction with Merlin is taken to be the sequence of mixed states he has, over all steps of the protocol. The zero-knowledge requirement is that each of these states must have trace distance at most (say) 1/10 from a state that Arthur could prepare himself (in BQP), without help from Merlin. Arthur is assumed to be an honest verifier.

Defined in [Wat02], where the following was also shown:

Subsequently, [Wat09b] showed that honest-verifier and general-verifier quantum statistical zero-knowledge are equivalent.

There exists an oracle relative to which QSZK does not contain UPcoUP, and a random oracle relative to which QSZK does not contain UP [MW18].

Linked From

NIQSZK: Non-Interactive QSZK

Has the same relation to QSZK as NISZK does to SZK.

Defined in [Kob02], where it was also shown that the following promise problem is complete for NIQSZK. Given a quantum circuit, we are promised that the state it prepares (when run on the all-0 state, and tracing out non-output qubits) has trace distance either at most 1/3 or at least 2/3 from the maximally mixed state. The problem is to output "no" in the former case and "yes" in the latter.

NIQPZK can be defined similarly.

More about...


QIP: Quantum IP

The class of decision problems such that a "yes" answer can be verified by a quantum interactive proof. Here the verifier is a BQP (i.e. quantum polynomial-time) algorithm, while the prover has unbounded computational resources (though cannot violate the linearity of quantum mechanics). The prover and verifier exchange a polynomial number of messages, which can be quantum states. Thus, the verifier's and prover's states may become entangled during the course of the protocol. Given the verifier's algorithm, we require that

  1. If the answer is "yes," then the prover can behave in such a way that the verifier accepts with probability at least 2/3.
  2. If the answer is "no," then however the prover behaves, the verifier rejects with probability at least 2/3.

Let QIP[k] be QIP where the prover and verifier are restricted to exchanging k messages (with the prover going last).

Defined in [Wat99], where it was also shown that PSPACE is in QIP[3].

Subsequently [KW00] showed that for all k>3, QIP[k] = QIP[3] = QIP.

QIP is contained in EXP [KW00].

QIP = IP = PSPACE [JJUW09]; thus quantum computing adds no power to single-prover interactive proofs.

QIP(1) is more commonly known as QMA.

See also: QIP[2], QSZK.

More about...


QIP[2]: 2-Message Quantum IP

See QIP for definition.

Contains QSZK [Wat02].

More about...


QMA: Quantum MA

The class of decision problems such that a "yes" answer can be verified by a 1-message quantum interactive proof. That is, a BQP (i.e. quantum polynomial-time) verifier is given a quantum state (the "proof"). We require that

  1. If the answer is "yes," then there exists a state such that verifier accepts with probability at least 2/3.
  2. If the answer is "no," then for all states the verifier rejects with probability at least 2/3.

QMA = QIP(1).

Defined in [Wat00], where it is also shown that group non-membership is in QMA.

Based on this, [Wat00] gives an oracle relative to which MA is strictly contained in QMA.

Kitaev and Watrous (unpublished) showed QMA is contained in PP (see [MW05] for a proof). Combining that result with [Ver92], one can obtain an oracle relative to which AM is not in QMA.

Kitaev ([KSV02], see also [AN02]) showed that the 5-Local Hamiltonians Problem is QMA-complete. Subsequently, Kempe and Regev [KR03] showed that even 3-Local Hamiltonians is QMA-complete. A subsequent paper by Kempe, Kitaev, and Regev [KKR04], has hit rock bottom (assuming P does not equal QMA), by showing 2-local Hamiltonians QMA-complete.

Compare to NQP.

If QMA = PP then PP contains PH [Vya03]. This result uses the fact that QMA is contained in A0PP.

Approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete [AGK07].

See also: QCMA, QMA/qpoly, QSZK, QMA(2), QMA-plus.

More about...


SZK: Statistical Zero Knowledge

The class of decision problems for which a "yes" answer can be verified by a statistical zero-knowledge proof protocol. In such an interactive proof(see IP), we have a probabilistic polynomial-time verifier, and a prover who has unbounded computational resources. By exchanging messages with the prover, the verifier must become convinced (with high probability) that the answer is "yes," without learning anything else about the problem (statistically).

What does that mean? For each choice of random coins, the verifier has a "view" of his entire interaction with prover, consisting of his random coins as well as all messages sent back and forth. Then the distribution over views resulting from interaction with the prover has to be statistically close to a distribution that the verifier could generate himself (in polynomial-time), without interacting with anyone. (Here "statistically close" means that, say, the trace distance is at most 1/10.)

The most famous example of such a protocol is for graph nonisomorphism. Given two graphs G and H, the verifier picks at random one of the graphs (each with probability 1/2), permutes its vertices randomly, sends the resulting graph to the prover, and asks, "Which graph did I start with, G or H?" If G and H are non-isomorphic, the prover can always answer correctly (since he can use exponential time), but if they're isomorphic, he can answer correctly with probability at most 1/2. Thus, if the prover always gives the correct answer, then the verifier becomes convinced the graphs are not isomorphic. On the other hand, the verifier already knew which graph (G or H) he started with, so he could simulate his entire view of the interaction himself, without the prover's help.

If that sounds like a complicated definition, well, it is. But it turns out that SZK has extremely nice properties. [Oka96] showed that:

Subsequently, [SV97] showed that SZK has a natural complete promise problem, called Statistical Difference (SD). Given two polynomial-size circuits, C0 and C1, let D0 and D1 be the distributions over their respective outputs when they're given as input a uniformly random n-bit string. We're promised that D0 and D1 have trace distance either at most 1/3 or at least 2/3; the problem is to decide which is the case.

Note: The constants 1/3 and 2/3 can be amplified to 2-poly(n) and 1-2-poly(n) respectively. But it is crucial that (2/3)2 > 1/3.

Another complete promise problem for SZK is Entropy Difference (ED) [GV99]. Here we're promised that either H(D0)>H(D1)+1 or H(D1)>H(D0)+1, where the distributions D0 and D1 are as above, and H denotes Shannon entropy. The problem is to determine which is the case.

If any hard-on-average language is in SZK, then one-way functions exist [Ost91].


See general zero-knowledge (ZK).

Contains PZK and NISZK, and is contained in AMcoAM, as well as CZK and QSZK.

There exists an oracle relative to which SZK is not in BQP [Aar02].

Contained in DQP [Aar02b].

More about...