Identical to MA except for that Arthur (the verifier) has random access to the proof string given by Merlin, and is limited to running times of order .
This class was used by [SM03] to show that if EXP has circuits of polynomial size, then EXP = MA.
Equals the union of DTIME(2p(n)) over all polynomials p.
If EXP is in P/poly then EXP = MA [BFL91].
Problems complete for EXP under many-one reductions have measure 0 in EXP [May94], [JL95].
There exist oracles relative to which
[BT04] show the following rather striking result: let A be many-one complete for EXP, and let S be any set in P of subexponential density. Then A-S is Turing-complete for EXP.
[SM03] show that if EXP has circuits of polynomial size, then P can be simulated in MAPOLYLOG such that no deterministic polynomial-time adversary can generate a list of inputs for a P problem that includes one which fails to be simulated. As a result, EXP ⊆ MA if EXP has circuits of polynomial size.
[SU05] show that EXP NP/poly implies EXP P||NP/poly.
In descriptive complexity EXPTIME can be defined as SO() which is also SO(LFP)