Class Description

FBQP: Function BQP

Has the same relation to BQP as FNP does to NP.

There exists an oracle relative to which PLS is not contained in FBQP [Aar03].

Linked From

PLS: Polynomial Local Search

The subclass of TFNP function problems that are guaranteed to have a solution because of the lemma that "every finite directed acyclic graph has a sink."

More precisely, for each input, there's a finite set of solutions (i.e. strings), and a polynomial-time algorithm that computes a cost for each solution, and a neighboring solution of lower cost provided that one exists. Then the problem is to return any solution that has cost less than or equal to all of its neighbors. (In other words, a local optimum.)

(Note: In the Zookeeper's humble opinion, PLS should have been defined as follows: there exist polynomial-time algorithms that compute the cost of a solution, and the set of all neighbors of a given solution, not just a single solution of lower cost. Of course we'd require that every solution has only polynomially many neighbors. The two definitions are not obviously equivalent, and it's conceivable that knowing all the neighbors would be helpful -- for example, in simulated annealing one sometimes makes uphill moves.)

(Note to Note: The equivalance of these classes was shown (though not stated explicitly) in Theorem 1 of [JPY88].)

Defined in [JPY88], [PY88].

There exists an oracle relative to which PLS is not contained in FBQP [Aar03].

Also, there exist oracles relative to which PLS is not contained in PPA [BM04] or PPP [GHJ+22], and PPA and PPP are not contained in PLS [Mor01].

[CT07] conjecture that if PPAD is in P, then PLS is in P.

More about...


RBQP: Strict Quantum RP

The class of problems in NP whose witnesses are in FBQP. For example, the set of square-free numbers is in coRBQP using only the fact that factoring is in FBQP. (Even without a proof that the factors are prime, the factorization proves that there is a square divisor.)

Contains RP and ZBQP, and is contained in BQP and RQP. Defined here to clarify EQP; see also ZBQP.

More about...


ZBQP: Strict Quantum ZPP

Defined as RBQP ∩ coRBQP. Equivalently, the class of problems in NP ∩ coNP such that both positive and negative witnesses are in FBQP.

For example, the language of square-free numbers is in ZBQP, because factoring is in FBQP and a factorization can be certified in ZPP (indeed in P, by [AKS02]).

Unlike EQP or ZQP, ZBQP would generalize ZPP in practice if quantum computers existed, in the sense that it provides proven answers.

Contains ZPP and is contained in RBQP and ZQP. Also, ZBQPZBQP = ZBQP. Defined here to clarify EQP and ZQP.

More about...