603 classes
Symbols
0-1-NPC
:
Binary Restriction of NP Over The Complex Numbers
1NAuxPDAp
:
One-Way NAuxPDAp
2-EXP
:
Double-Exponential Time
3SUM-hard
:
Problems hard for 3SUM
#AC0
:
Sharp-AC0
#GA
:
Graph Automorphism
#L
:
Sharp-L
#L/poly
:
Nonuniform #L
#P
:
Sharp-P or Number-P
#W[t]
:
Sharp-W[t]
⊕EXP
:
Parity EXP
⊕L
:
Parity L
⊕L/poly
:
Nonuniform ⊕L
⊕P
:
Parity P
⊕Pcc
:
Communication Complexity ⊕P
⊕SAC0
:
AC0 With Unbounded Parity Gates
⊕SAC1
:
AC1 With Unbounded Parity Gates
A
A0PP
:
One-Sided Analog of AWPP
AC
:
Unbounded Fanin Polylogarithmic-Depth Circuits
AC0
:
Unbounded Fanin Constant-Depth Circuits
AC0[m]
:
AC0 With MOD m Gates
AC1
:
Unbounded Fanin Log-Depth Circuits
ACC0
:
AC0 With Arbitrary MOD Gates
Ack
:
Ackermann Time
AH
:
Arithmetic Hierarchy
AL
:
Alternating L
ALL
:
The Class of All Languages
ALOGTIME
:
Logarithmic time alternating RAM
AlgP/poly
:
Polynomial-Size Algebraic Circuits
Almost-NP
:
Languages Almost Surely in NPA
Almost-P
:
Languages Almost Surely in PA
Almost-PSPACE
:
Languages Almost Surely in PSPACEA
AM
:
Arthur-Merlin
AMcc
:
Communication Complexity AM
AMEXP
:
Exponential-Time AM
AM ∩ coAM
:
The intersection of AM and coAM
AM[polylog]
:
AM With Polylog Rounds
AmpMP
:
Amplifiable MP
AmpP-BQP
:
BQP Restricted To AmpP States
AP
:
Alternating P
APP
:
Amplified PP
APSPACE
:
Alternating PSPACE
APX
:
Approximable
AUC-SPACE(f(n))
:
Randomized Alternating f(n)-Space
AuxPDA
:
Auxiliary Pushdown Automata
AVBPP
:
Average-Case BPP
AvgE
:
Average Exponential-Time With Linear Exponent
AvgP
:
Average Polynomial-Time
AW[P]
:
Alternating W[P]
AWPP
:
Almost WPP
AW[SAT]
:
Alternating W[SAT]
AW[*]
:
Alternating W[*]
AW[t]
:
Alternating W[t]
AxP
:
Approximable in Polynomial Time
AxPP
:
Approximable in Probabilistic Polynomial Time
B
βFOLL
:
Limited-Nondeterminism FOLL
βMAC0
:
Limited-Nondeterminism MAC0
βP
:
Limited-Nondeterminism NP
BC=P
:
Bounded-Error C=P
BH
:
Boolean Hierarchy Over NP
BPd(P)
:
Polynomial Size d-Times-Only Branching Program
BPE
:
Bounded-Error Probabilistic E
BPEE
:
Bounded-Error Probabilistic EE
BPHSPACE(f(n))
:
Bounded-Error Halting Probabilistic f(n)-Space
BPL
:
Bounded-Error Probabilistic L
BP•L
:
Bounded-Error Probabilistic L with Two Way Access to Randomness
BP•NP
:
Probabilistic NP
BPP
:
Bounded-Error Probabilistic Polynomial-Time
BPPcc
:
Communication Complexity BPP
BPP
cc
:
BPPcc in NOF model,
players
BPPKT
:
BPP With Time-Bounded Kolmogorov Complexity Oracle
BPP/log
:
BPP With Logarithmic Karp-Lipton Advice
BPP/mlog
:
BPP With Logarithmic Deterministic Merlin-Like Advice
BPP//log
:
BPP With Logarithmic Randomness-Dependent Advice
BPP/rlog
:
BPP With Logarithmic Probabilistically Sampled Random Advice
BPP-OBDD
:
Polynomial-Size Bounded-Error Ordered Binary Decision Diagram
BPPpath
:
Threshold BPP
BPQP
:
Bounded-Error Probabilistic QP
BPSPACE(f(n))
:
Bounded-Error Probabilistic f(n)-Space
BPTIME(f(n))
:
Bounded-Error Probabilistic f(n)-Time
BQL
:
Bounded-Error Quantum Logspace
BQNC
:
Alternate Name for QNC
BQNP
:
Alternate Name for QMA
BQP
:
Bounded-Error Quantum Polynomial-Time
BQP/log
:
BQP With Logarithmic-Size Karp-Lipton Advice
BQP/poly
:
BQP With Polynomial-Size Karp-Lipton Advice
BQP/mlog
:
BQP With Logarithmic-Size Deterministic Merlin-Like Advice
BQP/mpoly
:
BQP With Polynomial-Size Deterministic Merlin-Like Advice
BQP/qlog
:
BQP With Logarithmic-Size Quantum Advice
BQP/qpoly
:
BQP With Polynomial-Size Quantum Advice
BQP-OBDD
:
Polynomial-Size Bounded-Error Quantum Ordered Binary Decision Diagram
BQPSPACE
:
Bounded-Error Quantum PSPACE
BQTIME(f(n))
:
Bounded-Error Quantum f(n)-Time
BQPtt/poly
:
BQP/mpoly With Truth-Table Queries
k-BWBP
:
Bounded-Width Branching Program
C
C=AC0
:
Exact-Counting AC0
C=L
:
Exact-Counting L
C=P
:
Exact-Counting Polynomial-Time
CC
:
Comparator Circuits
CC0
:
Constant-Depth MODm Circuits
CFL
:
Context-Free Languages
CH
:
Counting Hierarchy
Check
:
Checkable Languages
CkP
:
kth Level of CH
CL
:
Catalytic Logspace
CL#P
:
Cluster Sharp-P
CLOG
:
Continuous Logarithmic-Time
CNP
:
Continuous NP
coAM
:
Complement of AM
coC=P
:
Complement of C=P
cofrIP
:
Complement of frIP
Coh
:
Coherent Languages
coMA
:
Complement of MA
coModkP
:
Complement of ModkP
compIP
:
Competitive IP Proof System
compNP
:
Competitive NP Proof System
coNE
:
Complement of NE
coNEXP
:
Complement of NEXP
coNL
:
Complement of NL
coNP
:
Complement of NP
coNPC
:
coNP-Complete
coNPcc
:
Complement of NPcc
coNP/poly
:
Complement of NP/poly
coNQP
:
Complement of NQP
coRE
:
Complement of RE
coRNC
:
Complement of RNC
coRP
:
Complement of RP
coSL
:
Complement of SL
coSPARSE
:
Complement of SPARSE
coUCC
:
Complement of UCC
coUP
:
Complement of UP
CP
:
Continuous P
cq-Σ2
:
Classical-Quantum-Σ2P
CSIZE(f(n))
:
Circuit Size f(n)
CSL
:
Context Sensitive Languages
CSP
:
Constraint Satisfaction Problems
CSPACE
:
Catalytic space
CZK
:
Computational Zero-Knowledge
D
D#P
:
Alternate Name for P#P
DCFL
:
Deterministic CFL
Δ2P
:
P With NP Oracle
δ-BPP
:
δ-Semi-Random BPP
δ-RP
:
δ-Semi-Random RP
DET
:
Determinant
DiffAC0
:
Difference #AC0
DistributionPH
:
Distribution PH
DisNP
:
Disjoint NP Pairs
DistNP
:
Distributional NP
DP or Dp
:
Difference Polynomial-Time
DQC1
:
Deterministic Quantum Computing with 1 Clean Bit
DQP
:
Dynamical Quantum Polynomial-Time
DSPACE(f(n))
:
Deterministic f(n)-Space
DTIME(f(n))
:
Deterministic f(n)-Time
DTISP(t(n),s(n))
:
Simultaneous t(n)-Time and s(n)-Space
Dyn-FO
:
Dynamic FO
Dyn-ThC0
:
Dynamic Threshold Circuits
E
E
:
Exponential Time With Linear Exponent
EE
:
Double-Exponential Time With Linear Exponent
EEE
:
Triple-Exponential Time With Linear Exponent
EESPACE
:
Double-Exponential Space With Linear Exponent
EEXP
:
Double-Exponential Time
EH
:
Exponential-Time Hierarchy With Linear Exponent
ELEMENTARY
:
Finitely Iterated Exponential Time
ELkP
:
Extended Low Hierarchy
EP
:
NP with 2k Accepting Paths
EPTAS
:
Efficient Polynomial-Time Approximation Scheme
k-EQBP
:
Width-k Polynomial-Time Exact Quantum Branching Programs
EQP
:
Exact Quantum Polynomial-Time
EQPK
:
Exact Quantum Polynomial-Time with Gate Set K
EQTIME(f(n))
:
Exact Quantum f(n)-Time
ESPACE
:
Exponential Space With Linear Exponent
∃BPP
:
BPP With Existential Operator
∃NISZK
:
NISZK With Existential Operator
∃R
:
Existential theory of the reals
EXP
:
Exponential Time
EXP/poly
:
Exponential Time With Polynomial-Size Advice
EXPSPACE
:
Exponential Space
F
FBPP
:
Function BPP
FBQP
:
Function BQP
FERT
:
Fixed Error Randomized Time
FPERT
:
Fixed Parameter and Error Randomized Time
Few
:
FewP With Flexible Acceptance Mechanism
FewEXP
:
NEXP With Few Witnesses
FewP
:
NP With Few Witnesses
FH
:
Fourier Hierarchy
FIXP
:
Fixed Point
FNL
:
Function NL
FNL/poly
:
Nonuniform FNL
FNP
:
Function NP
FO
:
First-Order logic
FO(DTC)
:
First-order with deterministic transitive closure
FO(LFP)
:
First-order with least fixed point
FO(PFP)
:
First-order with partial fixed point
FO(TC)
:
First-order with transitive closure
FO[
]
:
Iterated First-Order logic
FOLL
:
First-Order log log n
FP
:
Function Polynomial-Time
FPNP[log]
:
FP With Logarithmically Many Queries To NP
FPL
:
Fixed Parameter Linear
FPR
:
Fixed-Parameter Randomized
FPRAS
:
Fully Polynomial Randomized Approximation Scheme
FPT
:
Fixed-Parameter Tractable
FPTnu
:
Fixed-Parameter Tractable (nonuniform)
FPTsu
:
Fixed-Parameter Tractable (strongly uniform)
FPTAS
:
Fully Polynomial-Time Approximation Scheme
FQMA
:
Function QMA
frIP
:
Function-Restricted IP Proof Systems
F-TAPE(f(n))
:
Provable DSPACE(f(n)) For Formal System F
F-TIME(f(n))
:
Provable DTIME(f(n)) For Formal System F
G
GA
:
Graph Automorphism
GAN-SPACE(f(n))
:
Games Against Nature f(n)-Space
GapAC0
:
Gap #AC0
GapL
:
Gap Logarithmic-Space
GapP
:
Gap Polynomial-Time
GC(s(n),C)
:
Guess and Check
GCSL
:
Growing CSL
GI
:
Graph Isomorphism
GLO
:
Guaranteed Local Optima
GPCD(r(n),q(n))
:
Generalized Probabilistically Checkable Debate
G[t]
:
Stratification of Fixed-Parameter Tractable Problems
H
HalfP
:
RP With Exactly Half Acceptance
HeurBPP
:
Heuristic BPP
HeurBPTIME(f(n))
:
Heuristic BPTIME(f(n))
HeurDTIME
(f(n))
:
Heuristic DTIME
HeurP
:
Heuristic P
HeurPP
:
Heuristic PP
HeurNTIME
(f(n))
:
Heuristic NTIME
HkP
:
High Hierarchy In NP
HO
:
High-Order logic
HVPZK
:
Honest-Verifier PZK
HVSZK
:
Honest-Verifier SZK
I
IC[log,poly]
:
Logarithmic Instance Complexity, Polynomial Time
IP
:
Interactive Proof Systems
IOP
:
Interactive Oracle Proof
IPP
:
Unbounded IP
IP[polylog]
:
IP With Polylog Rounds
J
K
K
:
Feasibly recursive functions
L
L
:
Logarithmic Space
LC0
:
Unbounded Fanin Linear Size (gates) Constant-Depth Circuits
LH
:
Logarithmic Time Hierarchy
LIN
:
Linear Time
LkP
:
Low Hierarchy In NP
LOGCFL
:
Logarithmically Reducible to CFL
LogFew
:
Logspace-Bounded Few
LogFewNL
:
Logspace-Bounded FewP
LOGLOG
:
loglog Space
LOGNP
:
Logarithmically-Restricted NP
LOGSNP
:
Logarithmically-Restricted SNP
L/poly
:
Nonuniform Logarithmic Space
LWPP
:
Length-Dependent Wide PP
M
MA
:
Merlin-Arthur
MAcc
:
Communication Complexity MA
MA'
:
Sparse MA
MAC0
:
Majority of AC0
MAE
:
Exponential-Time MA With Linear Exponent
MAEXP
:
Exponential-Time MA
mAL
:
Monotone AL
MAPOLYLOG
:
MA With Polylog Verifier
MaxNP
:
Maximization NP
MaxPB
:
MaxNP Polynomially Bounded
MaxSNP
:
Maximization SNP
MaxSNP0
:
Generating Class of MaxSNP
mcoNL
:
Complement of mNL
MinPB
:
MinNP Polynomially Bounded
MIP
:
Multi-Prover Interactive Proof
MIP*
:
MIP With Quantum Provers
MIPns
:
MIP with Non-Signaling Provers
MIPEXP
:
Exponential-Time Multi-Prover Interactive Proof
(Mk)P
:
Acceptance Mechanism by Monoid Mk
mL
:
Monotone L
MM
:
Problems reducible to matrix multiplication
MMSNP
:
Monadic Monotone SNP
mNC1
:
Monotone NC1
mNL
:
Monotone NL
mNP
:
Monotone NP
ModkL
:
Mod-k L
ModL
:
ModL
ModkP
:
Mod-k Polynomial-Time
ModP
:
ModkP With Arbitrary k
ModPH
:
Modular Counting Hierarchy
ModZkL
:
Restricted ModkL
mP
:
Monotone P
MP
:
Middle-Bit P
MPC
:
Monotone Planar Circuits
mP/poly
:
Monotone P/poly
mTC0
:
Monotone TC0
N
naCQP
:
non-adaptive Collapse-free Quantum Polynomial time
NAuxPDAp
:
Nondeterministic Auxiliary Pushdown Automata
NC
:
Nick's Class
NC0
:
Level 0 of NC
NC1
:
Level 1 of NC
NC2
:
Level 2 of NC
NE
:
Nondeterministic E
Nearly-P
:
Languages Superpolynomially Close to P
NE/poly
:
Nonuniform NE
NEE
:
Nondeterministic EE
NEEE
:
Nondeterministic EEE
NEEXP
:
Nondeterministic EEXP
NEXP
:
Nondeterministic EXP
NEXP/poly
:
Nonuniform NEXP
NIPZK
:
Non-Interactive PZK
NIQSZK
:
Non-Interactive QSZK
NISZK
:
Non-Interactive SZK
NISZKh
:
NISZK With Limited Help
NL
:
Nondeterministic Logarithmic-Space
NL/poly
:
Nonuniform NL
NLO
:
NL Optimization Problems
NLOG
:
NL With Nondeterministic Oracle Tape
NLIN
:
Nondeterministic LIN
NLT
:
Nearly Linear Time
NMCL
:
Nondeterministic Moore-Crutchfield Languages
NNLT
:
Nondeterministic Nearly Linear Time
NONE
:
The Empty Class
NP
:
Nondeterministic Polynomial-Time
NPC
:
NP-Complete
NPC
:
NP Over The Complex Numbers
NPcc
:
Communication Complexity NP
NP
cc
:
NPcc in NOF model,
players
NPI
:
NP-Intermediate
NP ∩ coNP
:
The intersection of NP and coNP
(NP ∩ coNP)/poly
:
Nonuniform NP ∩ coNP
NP/log
:
NP With Logarithmic Advice
NPMV
:
NP Multiple Value
NPMV-sel
:
NPMV Selective
NPMVt
:
NPMV Total
NPMVt-sel
:
NPMVt Selective
NPO
:
NP Optimization
NPOPB
:
NPO Polynomially Bounded
NP/poly
:
Nonuniform NP
(NP,P-samplable)
:
Average NP With Samplable Distributions
NPR
:
NP Over The Reals
NPSPACE
:
Nondeterministic PSPACE
NPSV
:
NP Single Value
NPSV-sel
:
NPSV Selective
NPSVt
:
NPSV Total
NPSVt-sel
:
NPSVt Selective
NQL
:
Nondet Quasi-Linear
NQL
:
Nondeterministic Quantum Languages
NQP
:
Nondeterministic Quantum Polynomial-Time
NSPACE(f(n))
:
Nondeterministic f(n)-Space
NT
:
Near-Testable
NT*
:
Near-Testable With Forest Ordering
NTIME(f(n))
:
Nondeterministic f(n)-Time
O
OIP
:
Oblivious IP
OMA
:
Oblivious MA
ONP
:
Oblivious NP
OptP
:
Optimum Polynomial-Time
O2P
:
Second Level of the Oblivious Symmetric Hierarchy
P
P
:
Polynomial-Time
P/log
:
P With Logarithmic Advice
P/poly
:
Nonuniform Polynomial-Time
P#P
:
P With #P Oracle
P#P[1]
:
P With Single Query To #P Oracle
PCTC
:
P With Closed Time Curves
para-
:
Parameterized Complexity
para-L
:
Parameterized Logspace
para-NL
:
Parameterized Nondeterministic Logspace
para-NL[f log]
:
Parameterized Nondeterministic Logspace
para-P
:
Parameterized Polynomial time.
PAC0
:
Probabilistic AC0
PBP
:
Polynomial-Size Branching Program
k-PBP
:
Polynomial-Size Width-k Branching Program
PC
:
Polynomial-Time Over The Complex Numbers
Pcc
:
Communication Complexity P
P
cc
:
Pcc in NOF model,
players
PCD(r(n),q(n))
:
Probabilistically Checkable Debate
P-Close
:
Problems Close to P
PCP(r(n),q(n))
:
Probabilistically Checkable Proof
PDQP
:
Product Dynamical Quantum Polynomial time
PermUP
:
Self-Permuting UP
PEXP
:
Probabilistic Exponential-Time
PF
:
Alternate Name for FP
PFCHK(t(n))
:
Proof-Checker
PH
:
Polynomial-Time Hierarchy
PHcc
:
Communication Complexity PH
Φ2P
:
Second Level of the Symmetric Hierarchy, Alternative Definition
PhP
:
Physical Polynomial-Time
Π2P
:
coNP With NP Oracle
PINC
:
Polynomial Ignorance of Names of Classes
PIO
:
Polynomial Input Output
PK
:
P With Kolmogorov-Complexity Oracle
PKC
:
Perfect Knowledge Complexity
PL
:
Probabilistic L
PL1
:
Polynomially-Bounded L1 Spectral Norm
PL∞
:
Polynomially-Bounded L∞-1 Spectral Norm
PLF
:
Polynomial Leaf
PLL
:
Polynomial Local Lemma
P-LOCAL
:
Polylogarithmic rounds in the LOCAL model
P-RLOCAL
:
Polylogarithmic rounds in the Randomized LOCAL model
PLS
:
Polynomial Local Search
PNP
:
P With Oracle Access To NP
PNPcc
:
Communication Complexity PNP
P||NP
:
P With Parallel Queries To NP
PNP[k]
:
P With k NP Queries(for constant k)
PNP[log]
:
P With Log NP Queries
PNP[log^2]
:
P With Log2 NP Queries
P-OBDD
:
Polynomial-Size Ordered Binary Decision Diagram
PODN
:
Polynomial Odd Degree Node
polyL
:
Polylogarithmic Space
PostBPP
:
BPP With Postselection
PostBPPcc
:
Communication Complexity PostBPP
PostBQP
:
BQP With Postselection
PP
:
Probabilistic Polynomial-Time
PPcc
:
Communication Complexity PP
PP/poly
:
Nonuniform PP
PPA
:
Polynomial Parity Argument
PPAD
:
Polynomial Parity Argument (Directed)
PPADS
:
Polynomial Parity Argument (Directed, Sink)
PPP
:
Polynomial Pigeonhole Principle
PPP
:
P With PP Oracle
PQMA[log]
:
P With Log QMA Queries
P||QMA
:
P With Parallel Queries To QMA
PQP
:
Probabilistic Quantum Polynomial-Time
PQUERY
:
PSPACE With Polynomial Queries
PPSPACE
:
Probabilistic PSPACE
PR
:
Primitive Recursive Functions
PR
:
Polynomial-Time Over The Reals
PrHSPACE(f(n))
:
Unbounded-Error Halting Probabilistic f(n)-Space
PromiseBPP
:
Promise-Problem BPP
PromiseBQP
:
Promise-Problem BQP
PromiseP
:
Promise-Problem P
PromiseRP
:
Promise-Problem RP
PromiseUP
:
Promise-Problem UP
PrSPACE(f(n))
:
Unbounded-Error Probabilistic f(n)-Space
P-Sel
:
P-Selective Sets
PSK
:
Polynomial Sink
PSPACE
:
Polynomial-Space
PSPACEcc
:
Communication Complexity PSPACE
PSPACE/poly
:
PSPACE With Polynomial-Size Advice
PT1
:
Polynomial Threshold Functions
PTAPE
:
Archaic for PSPACE
PTAS
:
Polynomial-Time Approximation Scheme
PT/WK(f(n),g(n))
:
Parallel Time f(n) / Work g(n)
PureSuperQMA
:
A pure-state analog of SuperQMA
PZK
:
Perfect Zero Knowledge
Q
Q
:
Quasi-Realtime Languages
QAC0
:
Quantum AC0
QAC0[m]
:
Quantum AC0[m]
QACC0
:
Quantum ACC0
QACf0
:
QAC0 With Fanout
QAM
:
Quantum AM
QCFL
:
Quantum CFL
QCMA
:
Quantum Classical MA
QCPH
:
Quantum Classical PH
QEPH
:
Entangled Quantum PH
QH
:
Query Hierarchy Over NP
QIP
:
Quantum IP
QIP[2]
:
2-Message Quantum IP
QL
:
Quasi-Linear
QMA
:
Quantum MA
QMA-plus
:
QMA With Super-Verifier
QMA+
:
QMA With Non-Negative Amplitudes
QMA(2)
:
Quantum MA With Multiple Certificates
QMA1
:
One Sided QMA
QMAlog
:
QMA With Logarithmic-Size Proofs
QMA+(2)
:
QMA(2) With Non-Negative Amplitudes
QMAM
:
Quantum Merlin-Arthur-Merlin Public-Coin Interactive Proofs
QMA/qpoly
:
QMA With Polynomial-Size Quantum Advice
QMIP
:
Quantum Multi-Prover Interactive Proofs
QMIPle
:
Quantum Multi-Prover Interactive Proofs With Limited Prior Entanglement
QMIPne
:
Quantum Multi-Prover Interactive Proofs With No Prior Entanglement
QNC
:
Quantum NC
QNC0
:
Quantum NC0
QNC0/qpoly
:
Quantum NC0 With Polynomial-Size Quantum Advice
QNC0/🐱
:
Quantum NC0 With Polynomial-Size Quantum Advice
QNCf0
:
Quantum NC0 With Unbounded Fanout
QNC1
:
Quantum NC1
QP
:
Quasipolynomial-Time
QPH
:
Quantum PH
QPIP
:
Quantum Prover Interactive Proof
QPLIN
:
Linear Quasipolynomial-Time
QPSPACE
:
Quasipolynomial-Space
QRG
:
Quantum Refereed Games
QRG(k)
:
k-turn Quantum Refereed Games
QRG(2)
:
Two-turn (one-round) Quantum Refereed Games
QRG(1)
:
One-turn Quantum Refereed Games
QRL
:
Quantum Regular Languages
QSZK
:
Quantum Statistical Zero-Knowledge
R
R
:
Recursive Languages
RBQP
:
Strict Quantum RP
RE
:
Recursively Enumerable Languages
REG
:
Regular Languages
RevSPACE(f(n))
:
Reversible f(n)-Space
RG
:
Refereed Games
RG(k)
:
k-turn Refereed Games
RG(2)
:
Two-turn (one-round) Refereed Games
RG(1)
:
One-turn Refereed Games
RHL
:
Randomized Halting Logarithmic-Space
RHSPACE(f(n))
:
One-Sided Error Halting Probabilistic f(n)-Space
RL
:
Randomized Logarithmic-Space
RNC
:
Randomized NC
RNC1
:
Randomized NC1
RP
:
Randomized Polynomial-Time
RPcc
:
Communication Complexity RP
RP
cc
:
Randomized P
cc
RPP
:
Restricted Pseudo Polynomial-Time
RQP
:
One-sided Error Extension of EQP
RSPACE(f(n))
:
Randomized f(n)-Space
S
S≠
:
Exclusive Stochastic Languages
S2P
:
Second Level of the Symmetric Hierarchy
S2E
:
Second Level of the Symmetric Linear Exponent Hierarchy
S2-EXP•PNP
:
Don't Ask
SAC
:
Semi-Unbounded-Fanin AC
SAC0
:
Semi-Unbounded-Fanin AC0
SAC1
:
Semi-Unbounded-Fanin AC1
SAPTIME
:
Stochastic Alternating Polynomial-Time
SBP
:
Small Bounded-Error Probability
SBPcc
:
Communication Complexity SBP
SBQP
:
Small Bounded-Error Quantum Polynomial-Time
SC
:
Steve's Class
SE
:
Subexponentially-Solvable Search Problems
SEH
:
Strong Exponential Hierarchy
SelfNP
:
Self-Witnessing NP
SFk
:
Width-k Bottleneck Turing Machines
Σ2P
:
NP With NP Oracle
SIZE(f(n))
:
Circuit Size f(n)
SKC
:
Statistical Knowledge Complexity
SL
:
Symmetric Logarithmic-Space
SLICEWISE PSPACE
:
Parametrized PSPACE
SNP
:
Strict NP
SO
:
Second-Order logic
SO(Horn)
:
Second-order in Horn form
SO(Krom)
:
Second-order in Krom form
SO[LFP]
:
Second-Order logic with least fixed point
SO[TC]
:
Second-Order logic with transitive closure
SO[
]
:
Iterated Second-Order logic
SP
:
Semi-Efficient Parallel
span-L
:
Span Logarithmic-Space
span-P
:
Span Polynomial-Time
SPARSE
:
Sparse Languages
SPL
:
Stoic PL
SPP
:
Stoic PP
SQG
:
Short Quantum Games
StoqMA
:
Stoquastic MA
SUBEXP
:
Deterministic Subexponential-Time
symP
:
Alternate Name for S2P
SZK
:
Statistical Zero Knowledge
SZKh
:
SZK With Limited Help
T
TALLY
:
Tally Languages
TC
:
Threshold Circuits
TC0
:
Constant-Depth Threshold Circuits
TC0(FOLL)
:
Languages that are TC0 Turing reducible to FOLL
TC1
:
Log-depth Threshold Circuits
TFNP
:
Total Function NP
Θ2P
:
Alternate name for PNP[log]
TI
:
Tensor Isomorphism
TOWER
:
Iterated Exponential Time
TreeBQP
:
BQP Restricted To Tree States
TREE-REGULAR
:
Regular Tree-Valued Languages
U
UAMcc
:
Unambiguous Arthur-Merlin Communication Complexity
UAP
:
Unambiguous Alternating Polynomial-Time
UCC
:
Unique Connected Component
UCFL
:
Unambiguous CFL
UE
:
Unambiguous Exponential-Time With Linear Exponent
UL
:
Unambiguous L
UL/poly
:
Nonuniform UL
UP
:
Unambiguous Polynomial-Time
UPcc
:
Communication Complexity UP
UPostBPPcc
:
Unrestricted Communication Analogue of PostBPP
UPPcc
:
Unrestricted Communication Analogue of PP
US
:
Unique Polynomial-Time
USBPcc
:
Unrestricted Communication Analogue of SBP
UWAPPcc
:
Unrestricted Communication Analogue of WAPP
V
VCk
:
Verification Class With A Circuit of Depth K
VCor
:
Verification Class With OR
VNCk
:
Valiant NC Over Field k
VNPk
:
Valiant NP Over Field k
VPk
:
Valiant P Over Field k
VPL
:
Visibly pushdown languages
VQPk
:
Valiant QP Over Field k
W
W[1]
:
Weighted Analogue of NP
WAPP
:
Weak Almost-Wide PP
WAPPcc
:
Communication Complexity WAPP
WHILE
:
While programs and some restrictions
WLC0
:
Unbounded Fanin Linear Size (wires) Constant-Depth Circuits
W[P]
:
Weighted Circuit Satisfiability
WPP
:
Wide PP
W[SAT]
:
Weighted Satisfiability
W[*]
:
Union of W[t]'s
W[t]
:
Nondeterministic Fixed-Parameter Hierarchy
W*[t]
:
W[t] With Parameter-Dependent Depth
X
XOR-MIP*[2,1]
:
MIP*[2,1] With 1-Bit Proofs
XL
:
Fixed-Parameter Logspace for Each Parameter
XNL
:
Fixed-Parameter Nondeterministic Logspace for Each Parameter
XNLP
:
Fixed-Parameter Nondeterministic Logspace and Polytime for Each Parameter
XP
:
Fixed-Parameter Tractable for Each Parameter
XPuniform
:
Uniform XP
Y
YACC
:
Yet Another Complexity Class
YP
:
Your Polynomial-Time or Yaroslav-Percival
YP*
:
Yaroslav-Percival Star
YPP
:
Yaroslav BPP
YQP
:
Yaroslav BQP
YQP*
:
Yaroslav BQP star
YQP*/poly
:
YQP* With Polynomial-Size Advice
Z
ZAMcc
:
Zero-Information Arthur-Merlin Communication Complexity
ZBQP
:
Strict Quantum ZPP
ZK
:
Zero-Knowledge (see CZK)
ZPE
:
Zero-Error Probabilistic E
ZP•L
:
Zero-Error Probabilistic L with Two Way Access to Randomness
ZPP
:
Zero-Error Probabilistic Polynomial-Time
ZPPcc
:
Communication Complexity ZPP
ZPTIME(f(n))
:
Zero-Error Probabilistic f(n)-Time
ZQP
:
Zero-Error Extension Of EQP